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Abstract, A particularly simple and transparent formulation of the exact self-consistent 
field theory of Brueckner is presented and a number of new results are proved. In particular, 
it is shown that the exact self-consistent function is one which among the functions in the 
trial space has maximum overlap with the exact eigenfunction and satisfies both the Brillouin 
and Brillouin-Brueckner properties and that the basic functional of the theory has optimal 
solutions other than the exact self-consistent function. The constraints under which the 
optimisation of the basic functional yields the desired solution are clearly stated and 
explained. Particularly simple proofs of some earlier results are given and some earlier 
results are strengthened. 

1. Introduction 

The exact self-consistent field (SCF) theory of Brueckner (Brueckner 1954, 1955a, b, 
Brueckner er al 1954, Brueckner and Levinson 1955) is called exact because though 
neither the Hamiltonian nor the wavefunction is exact, the energy (not the eigenvalue) 
is in fact exact. However, as is well known, it is not all that easy to determine exact 
energies and  the exact SCF theory is purely theoretical: yet in slightly less exact forms 
it has practical applications. Furthermore, the study of the exact SCF theory is important 
because of the insight one gains about the reaction operator and methods developed 
by the theory have considerable relevance for the so-called ab initio calculations. 

A simple, yet rigorous, account of the theory is presented here and  a particularly 
simple proof of a very general version of the Brillouin theorem given by Sharma and 
SriRankanathan (1980) (see also Pian and Sharma 1981) is exploited to show that the 
Brillouin-Brueckner theorem and the Brillouin theorem are essentially the same result 
and the exact SCF wavefunction has both these properties. The basic functional of the 
exact SCF theory is investigated and the constraints are established under which the 
optimisation produces the exact SCF wavefunction and the corresponding eigenvalue. 
In particular it is shown that the functional has other optimal solutions if the constraints 
are not implemented. 

The exact SCF theory is described here from first principles-all the operators of 
the theory are defined and simple proofs of all essential results are given. In order to 
keep the account simple, a treatment for only a non-degenerate eigenvalue of the 
Hamiltonian is given. The extension of the results to the degenerate case is relatively 
straightforward and uses few new concepts or results. 
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2. Formalities 

All operators appear as bold letters except the zero operator which appears as a simple 
zero (0). The choice of a bold letter 0 for a non-zero operator is unfortunate, but is 
retained for the sake of conformity with much of the earlier literature on the subject. 

Let H be the Hamiltonian of a many-electron system. Let q be the exact eigenfunc- 
tion of H belonging to the isolated non-degenerate eigenvalue E. Let T be any trial 
space (a set of vectors whose members belong to a specified family such as the family 
of products of one-electron functions (Hartree type) or  the family of single Slater 
determinants of one-electron functions (Hartree-Fock type)). Let 4 be a member of 
T with a non-zero overlap with v'. Let 0 be the projection on the one-dimensional 
subspace of the Hilbert space H spanned by 4 and let P be the projection on the 
orthogonal complement of this subspace, i.e. 

O P = P O = O  (1) 

O + P = I  (2) 
where I is the identity operator on H. Next an  operator H '  is defined for brevity and  
an  operator K is defined which is one of the fundamental operators in this theory: 

H ' =  H - EZ 

K = (YO - P H ' P  
(3) 

(4) 

where a # 0 is a real constant. The operator K whose self-adjointness follows from 
theorem 2 in appendix A of Weinstein and Stenger (1972) is invertible if and only if 
the following conditions are satisfied. 

then 
ZI' lies entirely in the image space of P and therefore 

(i) 4 and 9 have non-zero overlap: this is because if 4 is perpendicular to 

K q = O  ( 5 )  

and a linear operator which takes any non-zero vector to zero cannot be inverted. 
( i i )  E is an  isolated point eigenvalue; if it were not then it would be a limit point 

of the spectrum of H (see Weyl 1909): at such points for infinitely many vectors x,, Kx, 
is as close to zero as one likes which will imply that 0 is a point in the spectrum of K 
and a self-adjoint operator which has 0 in its spectrum cannot be inverted. 

( i i i )  (Y is non-zero, because if (Y were zero, then 

K 4 = 0  (6)  
and K cannot be invertible for the same reason as in (i). A more sophisticated and 
complete proof for the case when E is degenerate with finite multiplicity is given in 
Wilson and  Sharma (1981). All the properties which make K invertible have been 
assumed in the definitions of 4, E and a above, so hereafter K will be regarded as 
invertible. 

Let K - '  be the inverse of K, then 

( ~ o - P H ' P ) K - ' = I  (7) 
from which we easily deduce with the help of (1) and the self-adjointness of 0, K 
and K - '  that 

aOK-'  = 0 (8) 

cuK-'O = 0. (9) 
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In other words, K- '  commutes with 0. Further 

-PH'PK-'  = P 

OK-- p = PK-' 0 = 0 

and 

- PH'PK - ' P = P. 

Since K-' commutes with 0, one can write 

K-' = OK-'  0 + PK- 'P  

or 
PK-' = K - ' P  = p K - ' P  

and K-'  commutes with P also. 
One abbreviates (14) by defining an operator T by 

T = PK-'  = K - ' P  = p K - ' p .  

It immediately follows that P and T commute and 

P T = T P = T  

and hence 

OT=TO=O.  

Equation (12) can now be abbreviated to 

- P H ' T =  P (18) 

and its adjoint is 

- TH'P = P. (19) 

It matters not what value of cy is taken in defining K and therefore T ;  T satisfies 
equation (18), which is its most basic property: indeed T can be regarded as a solution 
of (18). Thus T is independent o f  cy and Lowdin (1962) and others have written it as 
P / ( E  - H )  rather than as PK-'P. It is shown by Wilson and Sharma (1982) that such 
a notation can lead first to confusion and thence to disaster. One useful property of 
T is expressed in the equation 

T = K - '  - c y  - 1 0  (20) 
which is easily deduced with the help of equations ( 2 ) ,  (8) and (15). 

With the help of T an operator is now defined 

n = I + TH' = z + PK - I  P H I  

which on multiplying on the right by P and using (19) immediately gives 

n P =  P +  T H ' P =  P -  P=O 

and consequently 

n = n 0 + n P  = no. 
On the other hand from (21) and (23) 

n =no= O +  THIO = 0 + THO - E T 0  = O +  THO. 
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Hence 

on=o (25) 

and 

P n  = n- on = n- 0. (26) 

Remembering that T is an eigenvector of H belonging to the eigenvalue E, i.e. 

H ’ T  = 0 

it follows from (21) that 

nT=T 

and 

H R T  = H T =  ET = EnT 

or 

H’nT = 0. 

Since 

0q = pcp 
for some complex number, /3, it follows from (30) and (23) that 

H ’ n 4  = 0. 

Any vector x can be written as 

x = ox+ PX = c4 + PX 

for some complex number c, it follows from (22) and (33) that 

H ‘ R x  = cH’4 + H ‘ n P x  = 0 

which proves that 

o = H Q  = H ’  + H ’  TH’ = H + HTH - EZ - ETH - EHT + E * T.  

Multiplying (35) by 0 both on the left and  the right and using (17) gives 

OEO = O ( H  + H T H ) O .  

Since n itself is not zeeo (for if it were it would imply from its definition (21) that 
- T  was inverse of H ‘ ,  but H ’  is not invertible because it takes T to zero) it follows 
after taking into account ( 2 2 )  that n is effectively non-zero only on the one-dimensional 
subspace O ( H ) .  In other words, for the vector 4 which spans the image space of 0 

n 4 # 0  (37) 

H ’ n 4  = 0 (38) 
implies that Cl4 is an  eigenvector of H belonging to the eigenvalue E, and since E 
has been assumed to be non-degenerate this means that 

then 

f ld = S T  (39) 



Exact SCF theory 367 

for some complex number s. The modulus of s shall be determined presently. To this 
end it is assumed that the eigenvector q is normalised to unity: 

(qIq)= 1. (40) 

Note that the normalisation of v’ used here is different from that used in earlier works 
(e.g., Lowdin 1962, Wilson and Sharma 1982). Taking the inner product of (39) by 
SY gives 

(41) = ( s ~ \ s ? ) =  1 + ( T H ’ ~  1 T H ’ ~ ) =  1 + ( T H +  I T H ~ )  = 1 +(41 H T ’ H / ~ )  

with Is\ given by (41). 
In the trial space T one wishes to find a 4 such that its overlap with v’, that is 

l(+lY)l, is maximum. The exact SCF theory does not actually find such a 4, but tells 
one what some of the properties of such a 4 are. 

Before concluding this section, it ought to be pointed out that one consequence of 
(39) is that whenever ,y is a vector such that 

O X f O  (43) 

then R,y is some linear multiple of T and therefore an  eigenvector of H belonging to 
the eigenvalue E. 

3. The exact SCF theory 

It is commonly stated in previous works that the exact SCF wavefunction is the function 
corresponding to the optimal value of the functional (OIH + HT,HI@) in the trial 
space with unit @; here 4 as a subscript of T implies that the resolution of identity 
(2) is made with the help of the operator 0 which is the projection on the span of 
the vector 4 which corresponds to the optimal value of the functional. However, since 
the value of ( 4 I H +  HTdH14) is a constant (actually the eigenvalue E ) ,  the functional 
is optimal everywhere in the trial space. 

The work which follows will show that the exact SCF wavefunction has the following 
properties: consider the functional (@lH + H T H / @ )  for unit @ with a fixed T defined 
with the help of some fixed vector dr belonging to the trial space T, then the function 
Q0 corresponding to the optimal value of the functional will, in general, be different 
from &. However, there is a choice of 4f for which 

@a = 4f (44) 
and this is precisely the exact SCF wavefunction which is not exact but is the function 
in the trial space with maximal overlap with the exact eigenfunction v’. 

Consider first the functional (OlH + HTHI@) for normalised @ without restricting 
either @ or  the fixed vector & whose span defines the projection 0 in (2) to the trial 
space T Then the optimal solution satisfies 

( H  + HTH)@., = pO0.  (45) 
Now 

H + HTH = H ( I  + T H )  = H R +  EHT = H R +  EH’T + E ~ T  = ~a + EH‘T + E ~ T .  
(46) 
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Multiplying (46) by 0 on the left gives 

E (  0.R + O H ' T ) @ ,  = pO@,, 

which, in view of (25), can be written as 

E (  O(Z+ H ' T ) ) @ , ,  = p0a0 

and can be further reduced to 

E a*@, = pO@0 

with the help of the adjoint of (21). 
Let 

O@, = t4f 
and 

R4,= s q .  

Es*t*(qI@,) = p{@o~o~@o) = p / f .  

Taking the inner product of (49) with @, gives 

Multiplying (45) on the left by P gives 

(47) 

(48) 

(49) 

E ( P R  + PH'T + ET)@,,  = p P @ ,  (53) 

which, in view of (26) and (18), can be rewritten as 

E [ ( f k -  O - P ) + E T ] @ , = ~ P @ ,  

and reduces further with the help of (2) and (21) to 

E (TH'+ E T ) @ ,  = p P @ ,  

(54) 

(55) 

and finally with the help of (31, (55) takes the simple form 

ETH@, = p P @ , .  (56) 

Thus the optimal solution 0, for a fixed T corresponding to 0 defined as the 
projection on the one-dimensional subspace spanned by an arbitrary 4f in the Hilbert 
space satisfies (49) and (56) to which it does not seem easy to give any significant 
physical interpretation. However, if 4f is chosen in such a way that the optimal solution 

satisfies 

@ o =  4f ( 5 7 )  

or, in other words, if 

P a , ,  = 0 (58) 

In that case t of equation (50) is 1 and it follows from (41) that 

]S IZ  = 1 (60) 



Exact S C F  theory 369 

and s can be taken to be 1 by a suitable choice of phase of &. Further, it follows 
from (36) that 

p = E  (61 1 
and (52) reduces to 

(w),) = 1 

which is possible for unit vectors 9 and Q,, if and only if 

\v = @,. 

Thus the optimal solution with the property that the optimal functional is the function 
whose span is the image space of 0 in the definition of T is the exact eigenfunction 
provided the trial space is the whole Hilbert space. When one restricts oneself to the 
trial space T which is not the whole Hilbert space, then equations (59) and (60) are 
only approximately satisfied even though 

PQo = 0 (63) 

T H Q ,  is no longer zero, but hopefully small. 
It will now be shown that provided the trial space T is of either Hartree or  

Hartree-Fock type then THOo is small enough to guarantee that the overlap between 
Q, and \Ir is maximum. To prove this it seems necessary to follow a completely different 
line of reasoning. 

Suppose that @, is the optimal solution of (QIH + HTHIQ) for unit Q when T is 
defined with the help of the projection 0 on the one-dimensional subspace spanned 
by Qo, the trial space T being of either Hartree or Hartree-Fock type. Let Qse be 
singly excited relative to Qo, in other words, Qse belongs to T and so does any linear 
combination of Q, and Qse and further 

(QselQo) = 0. (64) 

Thus it satisfies all the conditions of the Brillouin theorem as stated by Sharma and  
SriRankanathan ( 1980); therefore 

(65) (QseJH + HTHJQ,) = 0 

which, in view of (17) and  (3)  can be written as 

(Ose1H(Z+ TH’)IQ,)=O 

and which reduces further, with the help of (21), (39) and (27) to 

( Q s e l q )  = O .  (67) 

Thus all functions which are singly excited relative to Qo are orthogonal to the exact 
wavefunction 9, which is precisely the condition that Qo corresponds to the maximum 
of ~ ( Q o l ~ ) l  in T. The ease with which (67) has been established in this formulation 
should be noted-this result, or rather something which is equivalent to it and which 
will be established in the next section, has been described as the Brillouin-Brueckner 
theorem by Lowdin (1962); it really is only a simple example of the Brillouin theorem 
as stated by Sharma and  SriRankanathan (1980). 

The optimal solution Qo no longer satisfies (45) because optimisation is now 
constrained to the trial space T, but i t  does satisfy 

HbQo = EbQ, (68) 
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where Hb corresponds to H + HTH in the same way as the Hartree-Fock Hamiltonian 
HHF corresponds to H and Eb is the eigenvalue whose relation to the exact energy 
eigenvalue E will soon be determined. 

vb = H - Hb 

The Brueckner potential v b  is defined by 

(69) 

and in view of (67) it follows immediately from the first-order perturbation theory that 

(@se1 vbl@o) = 0 (70) 

( Q , s e l ~ l Q , a )  = 0 (71) 

and since @a is an eigenvector of Hb and is orthogonal to Qa,  it follows also that 

which, in this particular case, ought to be described as the Brillouin property and is 
a direct consequence of the Brillouin theorem. 

Before proceeding further it is interesting to note that the functional (@IH + HTHIQ,) 
for unit Q, and T defined with the help of projection 0 on the span of the optimal 
solution (Do, has other optimal solutions as well. To see this clearly, take the whole 
Hilbert space as the trial space, then 

= P. (72) 

The other optimal solutions E are eigenvectors of H +  HTH perpendicular to P and 
therefore satisfy 

p Z = E  (73) 

and therefore, from (56) 

E T H Z  = p Z .  (74) 

Using (20) and operating on the left by K gives 

E K ( K - ' - K ' O ) Z = p K E : .  

Remembering that (72) implies 

OZ=O 

(75) reduces to 

K E  = ( E I p P .  

(75) 

(76) 

(77) 

Thus these optimal solutions are eigenvectors of K perpendicular to P, which are 
clearly also eigenvectors of H perpendicular to P. Thus the other optimal solutions 
are simply the excited states. When one restricts oneself to the trial space 7', 0 is the 
projection on the span of Q0, and then optimal solutions in the image space of P are 
merely approximations to the excited states. 

4. Some other properties in the SCF theory 
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and then one has with the help of (68) and (17)  

(ao1ff + HTHI@,) = (@.,IHh + v b  + v b  TVbJQ.,). 

Next one defines the reaction operator t by 

t = v b  + v b  TVb 

and (79) then reduces to 

E = (Qo1H HTHI@,) = Eh+ (@oltl@o). 

(79) 

Since each Qse is perpendicular to q, if one takes the closure S of the span of all 
the singly excited states (note that linear combinations of singly excited states need 
not be singly excited: both ls3s and 2s4s are singly excited relative to ls2s but their 
linear combination no longer belongs to the trial space and one will have to stretch 
one's definition of singly excited states in order to regard the aforementioned linear 
combination as a singly excited state) then this subspace S is perpendicular to and 
does not play any part as far as deducing the properties of Y is concerned. Therefore, 
one can regard S' as the whole space. Let P, be the projection on S, then define 
projection Q by 

Q = P - P l  (82) 

and 

Pi Q = QPi 

in other words, Q is the projection on the orthogonal complement of S in the image 
space of P. In S' 

i = O + Q  (84) 

where i is the identity operator on SA. Regarding S' as the whole space, one can 
now define f and fl corresponding to T and fl on the whole space: 

(85) f = Q[aO - Q ( H  - E)Q]-'Q 

and 

ii = o + Q ~ Q H O  

and since Hb commutes with 0, one can write 

iz = o + Q?QV,O = o + ~ Q V ~ O .  (87)  

fl defined on the whole space commutes with P,,  because (22). i.e. 

f lP=O (88) 
implies 

f lP ,=O 

and (64) implies that 

PI* = 0 

which in turn implies that 

Plfl = 0. 
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This means that fl agrees with fi in S' and in S it is zero. Therefore, one can drop 
the hat from h in (87) and  regard it as an operator on the whole Hilbert space. This 
proof which is absolutely complete and rigorous should be compared with that given 
by Lowdin (1962) where a large number of difficult steps are omitted. 

Equation (91) implies that 

P ,  T H ' O  = P ,  THO = 0 

PI TVbO + PI THbO = 0. 

(92) 

which in view of (69) implies that 

(93) 

On the other hand since 0 is a projection on an  eigenspace of Hb implies that Hb 
commutes with 0, i.e. 

H b O  = OH,. (94) 

With the help of equations (94) and (17), (93) reduces to 

PI TVb 0 = 0. (95) 

The main conclusion (65) from the Brillouin theorem, after taking into account (17), 
(68), (78), (80) and ( 9 5 ) ,  takes the form 

(@sel+-k) = 0. (96) 

This is the alternative form of the so-called Brillouin-Brueckner theorem which was 
referred to in the previous section. In Lowdin (1962), (96) is deduced first and  (68) 
is found to be a consequence of that: in this work (68) is proved first as a particular 
case of the Brillouin theorem and (96) is easily deduced from that. All the results 
established in this work have remarkably simple proofs and it is hoped that simple 
proofs give a deeper understanding of the subject. 

5. Concluding remarks 

It should be emphasised that in all the applications the Hartree-type functions are 
more commonly used in the Brueckner theory and  such applications have been 
particularly successful in dealing with nuclear matter. Independent particle models 
based on the theory have been successfully applied to numerous problems concerning 
many-electron systems, such as for studying the electronic clouds in atoms, the mobile 
7~ electrons in the Huckel scheme and the band theory of solids: references to these 
applications will be found in Lowdin (1962). Methods based on the theory are also 
used in ab initio and semiempirical calculations of atomic and molecular properties. 
It is hoped that the insight gained by the simplifications achieved and  new results 
proved in this work will make the Brueckner theory even more useful than it currently 
is. 
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